455 research outputs found

    Gamma-ray burst observations with new generation imaging atmospheric Cerenkov Telescopes in the FERMI era

    Full text link
    After the launch and successful beginning of operations of the FERMI satellite, the topics related to high-energy observations of gamma-ray bursts have obtained a considerable attention by the scientific community. Undoubtedly, the diagnostic power of high-energy observations in constraining the emission processes and the physical conditions of gamma-ray burst is relevant. We briefly discuss how gamma-ray burst observations with ground-based imaging array Cerenkov telescopes, in the GeV-TeV range, can compete and cooperate with FERMI observations, in the MeV-GeV range, to allow researchers to obtain a more detailed and complete picture of the prompt and afterglow phases of gamma-ray bursts.Comment: 9 pages, two figures. Proceeding for the 6th "Science with the New Generation of High Energy Gamma-Ray Experiments" worksho

    Covalent functionalization enables good dispersion and anisotropic orientation of multi-walled carbon nanotubes in a poly(l-lactic acid) electrospun nanofibrous matrix boosting neuronal differentiation

    Get PDF
    A biocompatible porous scaffold obtained via electrospinning a nanocomposite solution of poly(l-lactic acid) and 4-methoxyphenyl functionalized multi-walled carbon nanotubes is presented here for the first time for the enhancement of neurite outgrowth. Optimization of blend preparation and deposition parameters paves the way to the obtainment of defect-free random networks of nanofibers with homogeneous diameters in the hundreds of nanometers length scale. The tailored covalent functionalization of nanotube surfaces allows a homogeneous dispersion of the nanofillers within the polymer matrix, diminishing their natural tendency to aggregate and form bundles. This results in a remarkable effect on the crystallization temperature, as evidenced through differential scanning calorimetry. Furthermore, transmission electron microscopy shows carbon nanotubes anisotropically aligned along the fiber axes, a feature believed to enhance neurite adhesion and growth. Indeed, microscopy images show neurites extension along the direction of nanofibers, highlighting the extreme relevance of scaffold morphology in engineering complex tissue environments. Furthermore, a remarkable effect on increasing the neurite outgrowth results when using the fibrous scaffold containing dispersed carbon nanotubes in comparison with an analogous one made of only polymer, providing further evidence of the key role played by carbon nanostructures in inducing neuronal differentiation

    Surgical sterilization of male and female grey squirrels (Sciurus carolinensis) of an urban population introduced in Italy

    Get PDF
    We report a successful surgical sterilization procedure for population control of 324 male and female free-ranging grey squirrels (Sciurus carolinensis) in Genoa (Italy). We describe the clinical procedure from the trapping of the animals to their surgical sterilization and release in another part of the city. Live-trapped squirrels were transported to the veterinary clinic within 1-2 hr of capture and maintained in a hospitalization room reserved for them. The waiting period before surgery was kept below 12 hr. The developed procedure has resulted in a survival of 94% of trapped squirrels from surgery to animal release. Sterilized squirrels started to feed in a very short time (1.0-1.5 hr), and after 2-3 days, it was possible to release them in a new area. Amoxicillin was used as a long-acting postoperative antibiotic to reduce the period of captivity. The successful surgical procedure described here can provide an important additional tool for the management of introduced populations of squirrels. We showed that the surgical sterilization of some hundred squirrels is clinically possible and could be included in management strategies aimed at removing critical populations of these species. Moreover, the data allow dosages and operational times in order to provide economic viability assessment of future population control measures

    A review on the radiological protection materiality in environmental sustainability reports

    Get PDF
    Materiality should be used as a strategic business tool, with implications beyond social, economic, and environmental responsibility in sustainability reporting. Organizations can benefit by incorporate materiality into their existing economic processes, creating a broader approach and ensuring strategies with significant social and environmental topics. This provides stakeholder engagement; prioritizes financial resources for sustainability; develops new business; identifies climate change issues; among others. In this context, aim this study was to present a review the materiality related to radiologic protection in organizational sustainability reports. The results show that radiologic protection is considered in several topics in the organizational sustainability reports evaluated, represented from issues occupational health and safety, environmental assessment suppliers, environmental compliance, local communities, and waste management. It was concluded that, in preparing the materiality matrix, it is necessary to have the methods defined advance to grant them to be reproduced and periodically reviewed. This will allow to demonstrate the sustainability evolution and its alignment with the organizations' strategies

    First bounds on the very high energy gamma-ray emission from Arp 220

    Get PDF
    Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15 hours. No significant signal was detected within the dedicated amount of observation time. The first upper limits to the very high energy Îł\gamma-ray flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap

    Constraints on the steady and pulsed very high energy gamma-ray emission from observations of PSR B1951+32/CTB 80 with the MAGIC Telescope

    Get PDF
    We report on very high energy gamma-observations with the MAGIC Telescope of the pulsar PSR B1951+32 and its associated nebula, CTB 80. Our data constrain the cutoff energy of the pulsar to be less than 32 GeV, assuming the pulsed gamma-ray emission to be exponentially cut off. The upper limit on the flux of pulsed gamma-ray emission above 75 GeV is 4.3*10^-11 photons cm^-2 sec^-1, and the upper limit on the flux of steady emission above 140 GeV is 1.5*10^-11 photons cm^-2 sec^-1. We discuss our results in the framework of recent model predictions and other studies.Comment: 7 pages, 7 figures, replaced with published versio

    MAGIC upper limits on the very high energy emission from GRBs

    Get PDF
    The fast repositioning system of the MAGIC Telescope has allowed during its first data cycle, between 2005 and the beginning of year 2006, observing nine different GRBs as possible sources of very high energy gammas. These observations were triggered by alerts from Swift, HETE-II, and Integral; they started as fast as possible after the alerts and lasted for several minutes, with an energy threshold varying between 80 and 200 GeV, depending upon the zenith angle of the burst. No evidence for gamma signals was found, and upper limits for the flux were derived for all events, using the standard analysis chain of MAGIC. For the bursts with measured redshift, the upper limits are compatible with a power law extrapolation, when the intrinsic fluxes are evaluated taking into account the attenuation due to the scattering in the Metagalactic Radiation Field (MRF).Comment: 25 pages, 9 figures, final version accepted by ApJ. Changet title to "MAGIC upped limits on the VERY high energy emission from GRBs", re-organized chapter with description of observation, removed non necessaries figures, added plot of effective area depending on zenith angle, added an appendix explaining the upper limit calculation, added some reference

    Observation of Pulsed Gamma-rays Above 25 GeV from the Crab Pulsar with MAGIC

    Get PDF
    One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 GeV. In this configuration, we detected pulsed gamma-rays from the Crab pulsar that were greater than 25 GeV, revealing a relatively high cutoff energy in the phase-averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar-cap scenario as a possible explanation of our measurement. The high cutoff energy also challenges the slot-gap scenario.Comment: Slight modification of the analysis: Fitting a more general function to the combined data set of COMPTEL, EGRET and MAGIC. Final result and conclusion is unchange
    • 

    corecore